Children run the risk of playground injuries as a result of falls that are more severe than permitted within the scopes of international playground standards such as; ASTM F1487, CSA-Z614 and EN1176. Falls are the leading cause of playground injuries, greater than all other causes combined and is one of the leading causes of death. These standards suggest their purpose is for the prevention of life-threatening, fatal and debilitating injury. The ASTM F1292 Standard’s focus is on the elimination of serious head injury through the management of impact attenuating surfaces within the playground use zones. This is to occur while the impact attenuation performance threshold for playground protective surfacing does not exceed 1000 HIC and/or 200 g. The stated performance value of 1000 HIC translates to a 16% risk of injury defined in the Abbreviated Injury Scale as an AIS >4. An AIS injury >4 is defined as a severe, life-threatening, with survival probable. In addition a fall resulting in an impact force of 200 g translates to a 10% risk of skull fracture. The proposal to lower the HIC to 700 will reduce the risk of an AIS>4 injury to less than 5%. A 5% probability of injury occurrence is considered statistically insignificant. The lowering of the HIC threshold will also lower the Gmax for almost all playground surfaces. Lowering these values shall in effect decrease the severity of head injuries and also the most prominent of injuries in playgrounds, the long-bone injury.

Discussion

Why have fall related playground injuries not been reduced since the first surfacing recommendations and standards were created? Why have some standards bothered to address other playground impact injuries when their incidence of occurrence are far below that of falls in the use zone?

Falls, in general are the leading cause of Traumatic Brain Injury (TBI) in children within the ages of 2-14 accounting for 50.2%, while automobiles and traffic at only 6.8%. In 2002 approximately 500,000 medically treated playground injuries occurred in the United States with 230,000 requiring emergency room visits and a cost of treatment just under $12,000,000,000. Treatment for TBI has risen from 16,700 annually, 2001 to 2009, to more than 30,000 today. It is imperative threshold values for playground surfacing systems be lowered to align with the scope of these standards to provide a higher margin for child user risk assessment error thereby reducing the probability for occurrence of the very injuries standards profess to address.

Playground injuries have been increasing over the past 40 years ever since the National Recreation and Park Association (NRPA) first approached the US Consumer Product Safety Commission (CPSC) to prepare a guide for playground safety and injury reduction. Using the injury data available and the premise of “reasonably foreseeable misuse” the CPSC concluded that playground injuries needed to be addressed. In a 1978 memorandum on Public Playground Equipment, falls to the surface accounted for 59% of the 92,600 playground injuries in 1977, while impact with moving objects was 7%, such as swings and rotating equipment. “Over 90% of all reported injuries are attributable to the way the equipment is used, or the physical, developmental, cognitive or other limitations of the users, or to one or more design characteristics of the equipment.” The Commission produced the first Handbook for
Public Playground Safety in 1981, using what was considered “state of the art” technology16 at the time. This was based on sub-human primate and cadaver studies performed by the automotive industry and the military. Initially and without the benefit of modern imaging technology, they concluded that the threat of death from a head impact was 200g or a deceleration of the head at 200 times the acceleration due to gravity. In 1960 the Gmax value for risk of death was based on impact durations of less than 6 milliseconds17. The duration at 200g was revised in the 1970 Wayne State Tolerance Curve (WSTC) down to 2ms, meaning that anyone exposed to an impact value of 200g for more than 2ms18 was considered as having a risk of death.

The CPSC Special Study: Injuries and Deaths Associated with Children’s Playground Equipment, by Deborah Tinsworth et al. pointed out that 79% of injuries in public playgrounds and 81% of home injuries are the result of falls19. Of these 39% of the injuries were fractures, with 80% to the wrist, lower arm and elbow, while 15% of the injuries were to the head and face and were diagnosed as concussions, internal injuries and fractures20. Playground injuries in 1977, when emergency rooms were the primary facility for treatment, amounted to 93,000, and the CPSC 1994 Special Report to Congress indicated there were 168,000 injuries21, and in 1999 injuries to emergency rooms increased to 205,85022. The latter study was from a time when treatment facilities had expanded to include other medical treatment options, which accounts for the higher number associated with medically treated. Injuries have more than doubled during the period when the CPSC Handbook was first published to almost 20 years later. The ASTM F1292 was 8 years old as of 1999 and had been revised 4 times since its inception, and the F1487 was 6 years old and revised 3 times. This increase in injuries, particularly falls, would indicate that the mechanisms to prevent injuries are inadequate.

US CPSC Report on Child Human Factors by the COMSIS Corporation

From the first publishing of the Handbook, the CPSC received negative input that the document did not reflect the reality what was occurring on of the playground and therefore engaged the COMSIS Corporation to study Human Factors Criteria for Playground Equipment Safety. In the scoping and background for the report there are the following comments:

In developing safety recommendations, the difference between “challenge” and “risk” must be kept in mind. When children are able to anticipate the possible consequences of testing their skills on playground equipment, they are presented with a challenger which they can choose to undertake. However, if an activity has hazardous outcomes that are difficult for children to foresee, that activity poses a risk.… Risk, however, present the potential for serious injury as a consequence of failure. To minimize risk, unintended and unnecessary hazards should be eliminated.23

In an overview of the injury data the COMSIS Report noted;

- “It is important to distinguish between superficial injuries (e.g., contusions and lacerations) and serious injuries (e.g. head and limb fractures, concussion and internal head injuries)”24
- “Injury rates for the end of the 1980s was estimated by Nichols as 390/100,000, while King and Ball estimated that 500 children per 100,000 attend a hospital emergency room each year as a result of a playground equipment related injury.”25
- “Falls to the surface were the predominant mode of injury in both age groups, accounting for 55% of injuries to younger children and 59% of injuries to older children.”26
• “Serious head injuries (including skull fracture, concussion, and internal head injury) accounted for a higher proportion of all slide-related injuries. Serious head injuries were prevalent among younger children on swings, slides and climbers. Younger children are probably at greater risk from impact with moving swings than older children, and more susceptible to head injury as a result of falls because they may not have sufficient motor coordination to their arms to break their fall and thereby protect their heads. (King and Ball 1989: Rutherford, 1979)”

• Since the 1988 study, deaths from swing impact appear to have almost disappeared. Strangulation due to entanglement on ropes, shoestrings, cords, leashes, clothing strings, and similar items continues to be the most common scenario involved in fatal playground incidents.

In relation to child development the COMSIS Report recognized the importance of play in the development of children with;

• “For young children, their play is their work...through play, children develop their intellectual, social, emotional, and physical (fine motor and gross motor) skills, as well as linguistic skills.”

• “Piaget’s separation of cognitive development into three states is a convenient framework to use for organizational purposes; the sensorimotor stage is from birth to 2 years, the preoperational stage is 2 through 6 years, and the concrete operational stage is from 7 to 12 years.”

Under the issue of surfacing and the mechanisms and injury thresholds for various injuries, but particularly the head of the child were considered. This document noted the following;

• “In the current CPSC guideline, the impact performance criterion for surfaces under playground equipment is intended to minimize the risk of serious head injury resulting from head first falls.”

• “Acceleration can be defined as the time rate of change of velocity, which can either be positive or negative. (ASTM F355-86)”

• “Head injury tolerance data for the head-first falls of children indicated that a conservative tolerance limit for head injury is 150-200g average acceleration for 3ms, or 200-250g peak g acceleration (Mohan et al, 1978).”

• “The 1979 NEISS Special Study showed that severe head injuries represented only 7% of all injuries cause by falls to the surface, the potential severity of head injury relative to other body locations of injury warrants special precautions. There is more uncertainty in diagnosing brain injury than other types of severe injury (e.g. limb fracture), since functional brain damage is thought to occur at impact levels well below those producing skull fracture, coma, brain tissue lesions, or other visible signs of physical damage (King and Ball, 1989; Goldsmith and Ommaya, 1984). The mechanisms of brain and spinal cord damage are less well understood than the mechanism of skull fracture. A second consideration is that children tend to fall head first, and younger children in particular may not have sufficient motor coordination to use their arms to break their fall and thereby protect their heads. Thus, head injuries are more likely when children (12 years of age and under) than when adults fall, and the risk appears to be even greater for younger children. Moreover, the risk of functional brain damage is greater if the brain injury occurs during childhood, which involves periods of rapid brain development.”
• “The severity of injury resulting from a fall depend on the following physical parameters; fall height, shape and rigidity of the impact surface, and falling body, body orientation and body mass of the victim (Committee of Trauma Research, 1985; King and Ball, 1989; NBS, 1979a)”\(^{35}\)

• “Skull fractures can result from direct impact, whereas brain injury can be due to a combination of impact and acceleration.”\(^{36}\)

• “In the absence of adequate models for the tolerance and structural failure limits of brain tissues, current criteria for head impact are based on threshold levels for skull fracture, which are assumed to be correlated with threshold levels for concussion (Goldsmith and Ommaya, 1984). Concussion is associated with 80% of all skull fractures; however, skull fracture can occur with substantial brain damage, and serious or lethal brain trauma can occur without noticeable skull damage or skull fracture (Goldsmith and Ommaya, 1984; King and Ball, 1989). Therefore skull fracture does not reliably indicate the presence or severity of brain injury (Sweeney, 1979a).”\(^{37}\)

• “There is consensus in the literature reviewed, not only that tolerance levels for brain injury are below those for skull fracture, but also that functional damage to neural tissue can occur prior to evidence of structural tissue failure that results from shearing forces on neural tissue (Committee on Trauma Research, 1985; Goldsmith and Ommaya, 1984. For example, diffuse brain injuries, which are associated with widespread primary brain damage, generally show no signs of physical damage either to the skull or the brain, yet can lead to complete loss of memory, or to dysfunction in motor, cognitive and verbal skills (Collantes 1989)”\(^{38}\)

• “Given that functional brain damage can occur at impact levels well below those produced by skull fracture or mechanical disruption or neural tissue, diagnosing brain injury can be difficult.”\(^{39}\)

• “There is consensus in the literature that apparently minor head injuries sustained by children may be associated with neuronal damage, and may result in persistent physical, mental, or behavioral changes, including sensory abnormalities, and increase risk of psychiatric disorders (Ball 1988; King and Ball 1989; Kraus, Fife, Cox, Ramstein and Conroy, 1986; Mohan et al., 1978)”\(^{40}\)

• “Regardless of fall height, children tend to land on their heads after falling from a standing position and rotating during the fall onto their heads; adults tend to land foot or side first.”\(^{41}\)

• “Children tend to land head first when they fall and so are at greater risk of head injury due to falls than adults…. Impact tolerance values from adult data may not be conservative enough when they are used to predict the severity of head injuries sustained by children.”\(^{42}\)

• “The CPSC guidelines recommend that a surface tested in accordance with this method should not impart a peak acceleration of more than 200g to the instrumented headform. Three other models for predicting head injury severity are based on linear acceleration, but also take into account the duration of impact: the Wayne State Tolerance Curve (WTSC), the Severity Index (SI) and the Head Injury Criteria (HIC)”\(^{43}\)

• “The AIS is a qualitative scale that assigns values from 0 to 6 to head injuries, ranging in severity from no injury (AIS =0) to maximum and currently untreatable injury (AIS=6). An AIS value of 2 corresponds to moderate, reversible injury and includes a simple skull fracture and mild concussion; this is the minimum AIS rating for skull fracture. Brain damage can be assigned AIS values between 3 and 6, depending on severity. An AIS value of 3 corresponds to [serious], but reversible damage; 4 dignifies a [severe], life-threatening injury that is potentially survivable; and 5 is reserved for critical injuries in which survival is uncertain.”\(^{44}\)
“An SI value of 1000 is used to estimate the upper limit for survival from internal head injuries caused by frontal blows to the forehead. Since an SI of 1000 corresponds to the median SI value that distinguished between survivors and non-survivors in simulated accident studies, it is clear that serious head injury can be expected at lower values (King and Ball, 1989).”

“The Head Injury Criteria (HIC) is an alternate interpretation of the WSTC (King and Ball, 1989). The portion of the impact pulse covered by the HIC was intended to taking into account the rate of load application, which is thought to be critical in determining soft tissue injury (Committee on Trauma Research, 1985; Goldsmith and Ommaya, 1984. An HIC value of 1000 is taken as the concussion tolerance threshold and is currently used by the US Department of Transportation as the standard for evaluating head injury and testing safety systems (e.g. restraint systems) in the context of vehicular collisions.”

“There is also the practical considerations that the peak g is easy to measure, as compared to the SI and HIC; not all laboratories have the requisite level of technical ability or quality control to measure SI or HIC reliably (King and Ball, 1989).”

“Mertz and Webber (1982, cited in King and Ball, 1989) estimated the percentage of the adult population expected to experience life-threatening brain injury (AIS level greater than or equal to 4) as a function of HIC (or SI for simple head impacts). They found that 56% and 16% of the adult population would be expected to experience such injuries at HIC values of 1500 and 1000.”

“First, for most playground surfaces tested, an SI of 1000 is thought to be roughly equivalent to peak values between 150 and 200 g.”

“With regard to the 200 peak g criterion, King and Ball (1989) stated that it “is not a particularly conservative figure so far as child injury and playground design are concerned.” In summarizing estimates of risk to children associated with peak g limits, they concluded that above 200g there is a grave risk of permanent brain injury resulting from a head-first fall, between 150 and 200 g there is moderate risk and below 50 g one can be fairly confident of no permanent brain injury.”

This all indicates that prior to setting the original limits or continuing to maintain the limits in ASTM F1292 there has been ample evidence that lower values provided by both the CPSC and the ASTM F1292.

Once the COMSIS corporation reviewed the impact values and found them lacking, they moved on to the ability to test the surface system. They noted that in the 1980s there were various headforms to select from. They were all metal and offered varieties of mass and shape including the ANSI B and C and what has now become the accepted 4.6kg hemispherical headform used around the world since 1999. Other comments were:

“Although the ANSI C metal headform was designed to simulate the human head in mass and geometry, the headform is rigid and so does not simulate the compressible tissue of the head (e.g. the scalp). As a result, the ANIS C headform and other rigid headforms (i.e. metal or wood) produce higher acceleration values and this provide more conservative estimates of head impact response, as compare to a resilient headform (King and Ball, 1989; NBS, 1979a). However, this effect of using a rigid headform is less pronounced in test of non-rigid surfaces than in tests of rigid surfaces.”
• “Specifying additional temperatures is important because in regions with extreme climates, very hot or cold temperatures (and low precipitation) tend to reduce the effectiveness of surfacing materials such as earth and grass (King and Ball, 1989).”

• “Volume 1 of the current guidelines suggests maintaining a 6-inch depth of organic loose materials (e.g. pine bark, nuggets, shredded hardwood bark). However, there is a strong consensus in standards and in the literature that a more conservative depth is warranted.”

• “The peak g model does not take into account the effects of impact duration, angular acceleration, impact locations other that frontal head impact, and direction of impact other than the anterior-posterior direction associated with frontal head impact.”

• “The peak g model has not been correlated with the risk of structural or functional brain damage, particularly for children.”

• “The 200 peak g tolerance limit is based on linear skull fracture data, yet functional and structural brain damage can occur at impact levels well below those produced by skull fracture.”

• “The 200 peak g tolerance limit is based primarily on adult data, but there are important differences in the skull characteristics and head impact responses of children and adults.”

An important component of testing impact attenuation is choosing a height from which the headform is dropped that reflects the potential for fall height based on “reasonable foreseeable misuse” of the playground structures by children. The COMSIS comments analyzed fall height with:

• “The highest accessible part of the equipment should be determined in the following way. Since children can fall from a swing seat at its maximum attainable angle (90 degrees from vertical), the highest part of a swing structure is equivalent to the maximum height of its support structure. On slides and platforms that have a guardrail or protective barrier, the highest accessible part corresponds to the maximum height above ground of the guardrail or protective barrier, rather than the maximum height of the platform itself. This takes into account the possibility that children may gain access to the top of the guardrail or barrier. For example, a 60 inch-high platform with a 38 inch protective barrier requires protection from falls up to 98 inches. On upper body devices, such as horizontal ladders and overhead rings whose top support bars are climbable, the maximum height of the device is taken from the highest accessible part.”

• “Further, there is some evidence that when young children do fall, they do not tend to break the fall with their hands and arms; therefore they are more likely to experience head first impacts than school-age children.”

It becomes evident that young children, preschool, 2-5 years old, are most curious, less experienced and therefore the most vulnerable age group to fall related head injuries. It becomes important to install and maintain the surfacing where playground falls are the most likely to occur within threshold limits established to address the injuries identified in the scope of the performance standards for playgrounds.

Once the impact measurement, test device, drop height and the results of the testing are known, it is necessary to communicate the performance of the surface associated with a particular play structure. The COMSIS Corporation recommended labelling with:

• “Manufactures of surfacing materials should supply the result of impact attenuation tests conducted by an independent lab in accordance with the ASTM draft standard for playground
surface systems; they should also provide information on environmental conditions and other factors that affect the impact absorbing potential of the products, as stated above.

- “Because conformance with the 200 peak g criterion requires knowing the maximum height for which protection from falls is required, a durable label should be permanently affixed in a prominent location to all playground equipment with the following information; 1) all playground equipment requires impact absorbing protective surfacing; 2) this piece of equipment requires protection from falls from a height of x feet.”

Reconstruction of a Playground Fatality Resulting from a Fall

In the Chris Van Ee reconstruction of a child death from climbing over the barrier on a plastic home structure and falling to the surface it was found that the child had considerable damage to the brain and died 36 hours after the incident. Some of the important parts of the study are as follows:

- “She had climbed the attached ladder to the top rail above the platform and was straddling the rail, with her feet 0.70 meters (28 inches) above the floor. She lost her balance and fell headfirst onto a 1-cm (⅜-inch) thick piece of plush carpet remnant covering the concrete floor.”
- “Results of the reconstruction are shown in Table 2. The differences between the two types of carpet were insignificant. The overall averages for HIC and peak linear acceleration were 335 and 125 g, respectively. The time window for maximizing the HIC calculation was quite short with an average of 3.7 ms.”
- “Currently there is not a specific skull fracture threshold associated with the CRABI-18, but the experimental results of this study indicate that the tolerance for skull fracture for a 23 month old child is likely greater than the 50% threshold value of 82 g’s and 290 HIC associated with the CRABI-6 [16].”
- “The results of this reconstruction are consistent with the current injury criteria based on both linear and angular acceleration. The CRABI-18 test device is an important tool in the assessment and evaluation of injury prevention and forensic investigation. This study further underscores the efficacy of this device.”

HIC and Head Injury Severity

The 2013 paper by Tyler Young on the prediction of mild traumatic brain injury provided:

“In 1997, Mertz developed an injury risk curve based on the Head Injury Criterion (HIC) which has been shown to accurately predict severe head injuries such as skull fractures”

“In order to more accurately predict injury, a 15ms timespan is used for the HIC15 to ensure the most severe acceleration interval is used.”
Mertz et al. developed injury risk curves to predict skull fracture and AIS≥4 brain injuries based on HIC15⁶⁶

“While the HIC15 has proven to be useful in mitigating severe head injuries, mild traumatic brain injuries, such as concussions, are not addressed. More recently, the biomechanics of mild traumatic brain injuries have been studied by analyzing the effects of linear and rotational acceleration on human brains”⁶⁷

“It was determined that the maximum principal strain and peak coup pressure in the brain increases with linear acceleration in the direction of impact.”⁶⁸

“These risk curves are a valuable tool that can aid researchers in designing safer vehicles, protective equipment, and products that can minimize the amount injuries that occur during traumatic events.”⁶⁹

Gmax and Head Injury Severity

In 2005, Terry Smith, Ph.D., a member of the ASTM F08 head gear group delivered a presentation on Linear Acceleration Probability Risk Curves. The goal was to improve understanding of head injury and accelerations associated with those head injuries.
The plot of AIS risk of injury related to the linear acceleration, including the NFL risk of concussion

<table>
<thead>
<tr>
<th>AIS Severity</th>
<th>Injury</th>
<th>Propose g range (Newman, 1989)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>none</td>
<td>0-50g</td>
</tr>
<tr>
<td>1</td>
<td>Headache, dizziness</td>
<td>50-100g</td>
</tr>
<tr>
<td>2</td>
<td>Unconscious < 1hr</td>
<td>100-150g</td>
</tr>
<tr>
<td>3</td>
<td>Unconscious 1-6 hrs</td>
<td>150-200g</td>
</tr>
<tr>
<td>4</td>
<td>Unconscious 6-24 hrs</td>
<td>200-250g</td>
</tr>
<tr>
<td>5</td>
<td>Unconscious >24 hrs</td>
<td>250-300g</td>
</tr>
<tr>
<td>6</td>
<td>Dead</td>
<td>300g</td>
</tr>
</tbody>
</table>

The frequency of injury in playgrounds depends to a large extent on the challenges presented and the ability of a child to master them. With certain structures, failure to meet the challenge will result in a fall. When the fall occurs, the severity of the injury will range from none to death depending upon the surface upon which the body lands, how far it falls and how it lands. Julie Gilchrist, MD, from the US CDC gave a presentation to ASTM F08 at the Atlanta meeting in 2012. Some of her observations are:

“Definition of Concussion” is “a type of traumatic brain injury caused by a bump, blow or jolt to the head or body” that “changes the way the brain normally works” and is a “functional injury, not structural.” “Young children and teens are at greater risk and take longer to heal.” The frequency of TBI for 0-4 years is 71/100,000 and 5-9 years 184/100,000 and 291/100,000 of the 10-14 age group. TBI amongst children has constantly risen from 177/100,000 in 2002 to 298/100,000 in 2009, a more than 50% increase. In the age groups of 0-4 and 5-9, TBI caused in playgrounds is either the first or second leading cause of injury. Although TBI are increasing and can be devastating to the injured party and
their families with long term consequences, fractures at 82,987 with 48,843 to the lower arm and wrist76 suggests that impact is major mechanism of this type of injury as well.

Other CDC publications \textit{TBI by External Cause} categorized falls, struck by/against, motor vehicle and traffic, assault, other and unknown in total and by age group. For the general population falls are 35.2\%, while vehicular is 17.3\%77. By comparison falls for 0-14 age group rise to 50.2\%, while vehicular and traffic injuries are only 6.8\%78, confirming the observation of the COMSIS Report that children at this age are more prone to falling and fall to the head and upper body79, leading to the conclusion that the activities children are involved with would benefit the greatest by improved impact attenuation values. Statistics show that the numbers of injuries treated both at the Emergency Room and other medical facilities are increasing rather than decreasing, again leading to the conclusion that the mechanisms for mitigation of injury currently in place for more than 30 years through standards and the CPSC Handbook (1000 HIC and 200 g) are inadequate.

The Ontario Injury Compass report on playground falls reported 78.6 per 100,000 for emergency room visits and 5.0 per 100,00080 for hospitalization is interesting in that it separated the type of injury as to whether the injured party was hospitalized or treated and released. Concussions, although a serious injury, are generally diagnosed and sent home for rest and further observation by a family practitioner, while those requiring hospitalization are definitely of a severity needing round the clock monitoring and treatment. Similarly simple fractures and sprains can be diagnosed and treated with or without casting and subsequent follow-up. Since this data is exclusively related to falls in playgrounds, the injury mechanism can only be an interaction between the falling child and the surface.

\textbf{Cost of Injury}

Canada has had a playground performance standard, CSA Z614, since 1990. Due to North American trade there have been efforts to harmonize this standard with ASTM F1487. The primary differences have been since 2007 when the fall heights for structures was moved from the platform to the top of barriers and guardrails. Canada has a population of 35.16 million and GDP of US $1.827 trillion81, while the United States has a population of 316.1 million and a GDP of US $16.8082 trillion. Typically when comparing statistics between the two countries they are multiplied or divided by 10 depending upon the source of the statistics. In relation to health care, Canada has a universal health care system where many costs associated with treatment and rehabilitation are paid for by the government and therefore a cost to the taxpayer, whereas the United States has a user pay system, where costs are paid by insurance or persons.

The SmartRisk data for 2004 is based on the NARCS database system and primarily relates to treatment received from hospitals and other sources, but the actual total number of injuries treated for a particular cause is not captured. Since Canada covers a vast geographic area and playground injuries such as concussions are under-reported or can be treated by other medical practitioners and facilities, it is likely that a significant number of injuries are unaccounted for. In any event, the data shows that falls for all ages are the highest in cost and number in relation to all other injuries when considering both direct and indirect costs. This study did not look at all playground injuries, but only those that were the result of a fall on the playground. Playgrounds falls accounted for 1,662 that required hospitalizations, and 21,158 that were treated and released, with 551 having partial and 37 having permanent disabilities83. These are outside the scope of international playground standards requiring the prevention of the debilitating injury. The costs were $106 million in direct costs, $79 million in indirect cost for a total of $185 million dollars84. Using the simple multiplier of 10, the direct cost would be $1.06 billion dollars for the cost in the United States which roughly corresponds to the $1.2 billion for
199585 reported by the CDC however not even close to the actual costs reported by the CPSC in 2004 for 2002 or $11.8 billion86. This would indicate that the cost of injuries in playgrounds is significant to extreme in both number and dollars. Therefore methods to mitigate injury justify the cost of improvement, particularly in relation to surfacing given the low cost alternatives such as woodchips and Engineered Wood Fiber (EWF).

Residual Impact of Reduced HIC: Lower Incidence of other Injuries

When looking at lowering impact attenuation properties for a particular surfacing system based on the calculation of HIC, there is the added benefit that all measures of impact attenuation since the calculation for both HIC and SI as dependent on g. This has the benefit, in terms of all fall related playground injury, of reducing other injuries severity such as long-bone injury and severity of concussions. To better understand this effect, one needs to understand bone fracture morphology.

Mary Clyde Pierce, et al. evaluated of bone fractures in children pointing out:

“fracture morphology reflects; (1) the forces and resultant stress generated by the specific mechanism and (2) the ability of the bone (and its surrounding tissues) to resist these forces.”87

“There are three pure forms of force: compression, tension, and shear. A compressive force is a pressing or squeezing force that is directed axially through the body or region (Hall, 1999, p. 73). Tension is a force that is also directed axially but results in stretching or pulling, rather than compression. Shear force tends to cause one part of the body to slide with respect to an adjacent part (Evans, 1974; Hall, 1999, p. 73).”88

“Extrinsic factors to the body include magnitude and direction of force, rate of loading, and area over which the force is distributed. Environmental factors such as surface type, height of fall, and initial velocity (standing, walking, running, propelled . . .) influence loading. Magnitude of load is also affected by the degree to which the impact surface can absorb and dissipate energy. Softer surfaces result in less energy available for injury while harder surfaces are more efficient in transmitting the energy to the body.”89

“Mechanisms of injury generate specific forces called loads that have the potential to cause structural damage. If the mechanism results in forces that exceed the injury threshold of a long bone, then a fracture is generated. The fracture morphology is a direct reflection of the degree and direction of the forces and the ability of the tissue to resist those forces. Mechanisms that generate greater amounts of energy with greater magnitudes of force may result in a completed fracture with the fracture type depending on the resultant combination of forces and moments.”90

The University of British Columbia, Pediatric Fractures paper reviews the causes of fractures in children with the following:

“The anatomy and biomechanics of pediatric bone differ from that of adult bone, leading to unique pediatric fracture patterns, healing mechanisms, and management. In comparison to adult bone, pediatric bone is significantly less dense, more porous and penetrated throughout by capillary channels. Pediatric bone has a lower modulus of elasticity, lower bending strength, and lower mineral content. The low bending strength induces more strain in pediatric bone than for the same stress on adult bone and the low modulus of elasticity allows for greater energy absorption before failure. The increased porosity of pediatric bone prevents propagation of fractures, thereby decreasing the incidence of comminuted fractures.”91

“The mechanisms of fracture change as children age. Younger children are more likely to sustain a fracture while playing and falling on an outstretched arm.”92

“Also, because a child’s ligaments are stronger than those of an adult, forces which would tend to cause a sprain in an older individual will be transmitted to the bone and cause a fracture in a child.”93
These would indicate that magnitude of impact forces are key factors in fractures and severity of fractures. Lower impact values for g and HIC will result in lower severity of long bone injury from falls.

In the Montreal study of actual playground injuries for 1995, prior to the F1292-99 which formalized the free-fall test procedure, and before recommended and mandated periodic field testing was adopted by the CSA, reviewed 110 actual injuries in relation to impact attenuation and actual severity of injury. The result showed;

“Conclusions — This study confirms the relationships between risk of injury, surface resilience, and height of equipment, as well as between type of material and severity of injury. Our data suggest that acceptable limits for surface resilience be set at less than 200 g, and perhaps even less than 150 g, and not exceed 2 m for equipment height.”

“The results show that the composition of inspected surfaces do not appear to be associated with the risk of injury, whereas the g-max and height of the equipment are.”

“Surfaces exceeding 200 g were three times more likely to be involved in an injury than those lower than 150.”

“the findings suggest that the g-max is a good predictor of fall injuries independent of the severity of the injury. The risk of injury was 1.8 times greater in the 150–199 g category compared with the reference category (<150 g).”

“This research strongly suggests that improving surfaces will help reduce the severity of injuries.”

“In fact, 70% of all injuries occurred on play equipment higher than 2 m, whereas only 42% of all playground equipment exceeded this height.”

“In conclusion, these data provide evidence that g-max is associated with the risk of injury and place into question the 200 g acceptable limit.”

Use of Lower Impact Values in Standards to Reduce Injury Frequency and Severity

Starting with Cynthia Illingworth, et al. back in the mid-1970s there has been a concern with the provision of impact attenuation for moving elements and surfacing, in particular swings. This was the inspiration for the impact attenuating swing seat developed, patented and sold by Sutcliffe Play in England with a 50g value. Other standards such as the CSA Z614 and ASTM F1487 required that swing seats be for single users to reduce the mass. Generally this was achieved through descriptive language such as recommending that they not be heavy or should be made of energy absorbing materials or requiring swing seats not accommodate more than one user. The advent of the need for greater inclusion in play gave rise to the multi-user swing that increased mass and therefore raised fears for a new potential for hazard. The larger swinging mass raised concerns for a return to the steel animal swings that were banned by the US CPSC in 1995 under release # 95-059 because these swings caused serious head injuries for 42 children and also 2 deaths. This caused the removal of approximately 10,000 swings and a significant cost to the owners and manufacturers, yet there was no outcry asking for a cost benefit on the removal. This was just accepted and everyone moved on.

Based on the Sutcliffe commercial effort and that of the British Standards Institute (BSI) and DIN, the need for a formal test for the impact attenuation of swing seats was developed as a component of the EN1176 part 2 Standard. This effectively utilizes the same headform (4.6kg) that is used in the testing of playground surfacing reconfigured to a sphere and suspending it in front of the impacting swing seat. The EN1176-2 set the limit for “swing seats and vertical tyre seats” as not to exceed 50 g, while for “swing seats and platforms for several users” having a diameter greater than 900mm shall not have an impact value greater than 120 g. The ASTM F15.29 sub-committee for playgrounds, which is
responsible for the entire playground including swings and playground surfacing through referencing compliance with ASTM F1292, made the decision to add a swing impact test to the ASTM F1487-11 using the same device and procedure as in the EN1177-2. For all swing seats the Gmax shall be not exceed 100 and the HIC shall not exceed 500105. Lastly the CSA technical committee for Playspaces adopted the test method and values from the F1487 in the 2014 revision to Z614-14106.

The swing impact tests have been a beacon of protection for children around the world, but the question might be: what is the frequency of injury this change is focused on? Tinsworth noted that “about 80% of the injuries associated with swings involved falls”107 and “about 3% of the injuries involved impact with moving equipment, such as swings”108.

It is difficult to understand that swing impact has been so dominant during following the mid-1990s and into the new century when Tinsworth noted that “since the 1988 study, deaths from swing impacts appear to have almost disappeared.”

Other changes where standards have modified the impact attenuation properties of playground surfacing is seen in the CSA Z614-07. This does not change the Gmax or HIC, but raises the fall height that is used as the minimum height for measuring critical height. While every standard in the world sets the fall height for a play structures with an elevated platform at the height of the platform, the Z614 provides:

“On elevated platforms where guardrails or protective barriers are required, the fall height shall be measured from the protective surfacing to 725 mm (28.54 in) above the elevated platform when intended for children 18 months to 5 years old and 950 mm (37.40 in) above the elevated platform when intended for children 5 to 12 years old.”109

“The fall height of an elevated platform that is totally enclosed by protective barriers that meet the roof shall be the height of the elevated platform.”110

“The fall height for any slide with a platform elevated more than 300 mm (11.81 in.) above the ground and where guardrails or protective barriers are required shall be measured from the protective surfacing to 725 mm (28.54 in.) above the elevated platform when intended for children 18 months to 5 years old and 950 mm (37.40 in) above the elevated platform when intended for children 5 to 12 years old and apply to the entire protective surfacing zone associated with the slide.”111

This change is in line with the recommendation for fall height made in the COMSIS report. Additionally, the above change the CSA Z614 does not have a limit to fall height as the European and Australian Standards do. Coupling no limit to fall height and the “tops of barriers” minimum requirement, there is the opportunity to demonstrate that the change has not been an economic disaster. As it turns out the timing of the change in 2007 was not the best with the onset of the recession of 2008 just around the corner. However the perfect storm did not happen, there was not a downturn in playground installations and very little was said of the change.

Summary of Pertinent Data

Effectively the COMSIS report’s information published in 1990 lead’s to the following conclusions;

1. Falls to the surface were the highest proportion of injuries in the 1980s, with a rate of 390/100,000 in the US and 500/100,000 in Great Britain.
2. Children, younger ones particularly, do not have sufficient skill to break their fall with their arms
3. 150-200g for 3m/s was a conservative estimate for tolerance to head injury
4. 7% of head injuries at AIS >4 and head injuries as compared to injuries to other parts of the body need special consideration.
5. More uncertainty in diagnosing brain injury than other severe injuries, since brain damage can occur well below the impact values for skull fracture
6. Risk of functional brain damage is greater if the brain injury occurs during childhood, which involves a period of rapid brain development
7. Skull fractures can result from direct impact, whereas brain injury can be due to a combination of impact and acceleration
8. Serious or lethal brain trauma can occur without noticeable skull damage or skull fracture
9. Skull fracture does not reliably indicate the presence or severity of brain injury
10. Diffuse brain injuries, which are associated with widespread primary brain damage, generally show no signs of physical damage either to the skull or the brain, yet can lead to complete loss of memory, or to dysfunction in motor, cognitive and verbal skills
11. An AIS value of 3 corresponds to serious, but reversible damage; 4 dignifies a severe, life-threatening injury that is potentially survivable; and 5 is reserved for critical injuries in which survival is uncertain
12. Since an SI of 1000 corresponds to the median SI value that distinguished between survivors and non-survivors in simulated accident studies, it is clear that serious head injury can be expected at lower values
13. The portion of the impact pulse covered by the HIC was intended to taking into account the rate of load application, which is thought to be critical in determining soft tissue injury
14. Mertz and Webber (1982, cited in King and Ball, 1989) found that 56% and 16% of the adult population would be expected to experience such injuries at HIC values of 1500 and 1000.
15. King and Ball, 1989, in summarizing estimates of risk to children associated with peak g limits, they concluded that above 200g there is a grave risk of permanent brain injury resulting from a head-first fall, between 150 and 200 g there is moderate risk and below 50 g one can be fairly confident of no permanent brain injury.
16. The 200 peak g tolerance limit is based on linear skull fracture data, yet functional and structural brain damage can occur at impact levels well below those produced by skull fracture.
17. The highest accessible part of the equipment should be determined in the following way.
18. On slide and platforms that have a guardrail or protective barrier, the highest accessible part corresponds to the maximum height above ground of the guardrail or protective barrier, rather than the maximum height of the platform itself, as adopted in the CSA Z614-07.
19. When young children do fall, they do not tend to break the fall, therefore they are more likely to experience head first impacts than school-age children.
20. Manufactures of surfacing materials should supply the result of impact attenuation tests
21. A durable label should be permanently affixed in a prominent location to all playground equipment with the following information; 1) all playground equipment requires impact absorbing protective surfacing; 2) this piece of equipment requires protection from falls from a height of x feet.

The reconstruction of the fatal play apparatus injury to a 23 month old child validated the automotive thresholds and reasonable foreseeable misuse;
1. The child fell and impacted her head with a Gmax of 125 and HIC of 335. This shows that the NHTSA threshold of 390 HIC is for baby is potential conservative and the 570 HIC being close to or beyond that for the 3 year child at 570 HIC.

2. The child at 23 months was able to not only climb onto the play apparatus to the intended platform, but also able to climb to the top of the barrier over which she fell.

The review of head injury predictors and models by Young in 2013 indicates;

1. An HIC of 700 is a 5% risk of skull fracture and 4% risk of a brain injury at AIS>4, which an HIC of 1000 is a 16% risk of skull fracture and 17% risk of AIS>4.
2. Increasing linear acceleration will also increase maximum principal strain and peak coup pressure.
3. The most severe portion of the HIC is restricted to 15ms or less, which is the range of playground impacts that are generally in the 3-9ms and therefore significantly more severe.

The presentation on risk of head injury based on linear acceleration by Terry Smith indicates anything over 100g is an injury no one should experience. The threshold for playground surfacing at 200 g allows significant injuries by linear acceleration. Any lowering of HIC from 1000 will result in a lowering of linear acceleration experienced by the child in a fall.

- 100-150g = unconscious for <1 hour
- 200-250g = unconscious for 6-24 hours
- 50-100g = NFL study risk of concussion

Julie Gilchrist, MD present on the severity of TBI in children and made the ASTM group aware of the work and information available from the US CDC;

- Challenge is essential to play value, physical, social and mental development of the child
- Debilitating injury through TBI must not extinguish the benefits of play
- High injury frequency does mean high injury severity if injury mitigation is in place
- Frequency of TBI in children is increasing
- For children TBI is the leading cause of injury for the 0-9 years group
- Falls are the mechanism for TBI in 50.2% of children 0-14, while vehicular and traffic is only 6.8%
- Children are more likely than adults to fall onto their heads and upper bodies

The Ontario Injury Compass looked at both the frequency and severity of injury sustained through falls in playgrounds;

- Concussions, although always serious and requiring treatment, do not always require hospitalization and may be discharged home from the ER and subject to future medical follow-up.
- Rate of injury from falls in playgrounds is 78.5/100,000 for treatment and release and 5/100,000 for hospitalizations.
- Fractures, primarily to the upper limbs, are the highest frequency for both treatment and release and hospitalization, while head injuries are number two.

Any change that may have a cost associated with the change demands an understanding of the cost of what is being prevented. The best detail cost in relation to the falls in playgrounds comes from the SmartRisk in Canada for data in 2004.

- Canada is 1/10th the size of the US for economic output and population

©Canadian Playground Advisory Inc., March 2015
• Annually in Canada, falls in playground account for 1662 hospitalizations, 21,158 Emergency Room treatment and release, with 551 partial disabilities and 37 permanent disabilities
• Falls in playgrounds account for $106,000,000.00 direct costs, $79,000,000.00 for indirect costs, giving a total of $185,000,000.00
• Annual cost of injury in the US in 1995 was $1,200,000,000.00
• Annual cost for playground injury in the US in 2002 was $11.8 billion

A lowering the HIC for playgrounds will have a positive outcome for the reduction of other injuries that have an impact component included in the mechanism of injury. The evaluation of Pierce et al. of long bone injuries in better understanding the violence of child abuse helps in understanding the mechanism of long bone fracture in children. The University of British Columbia pointed out some of the differences in bone structure for children and adults, while Laforest review the severity of injury related to impact value.

• Fractures are caused by - the forces and resultant stress generated by the specific mechanism
• the ability of the bone (and surrounding tissue) to resist the forces
• Pure forces are; compression, tensions and shear
• Compression force is a pressing or squeezing force that is directed axially through the body or region
• Extrinsic factors to the body include magnitude and direction of the force, rate of loading and area over which the force is distributed.
• Surface impact attenuation performance, height of fall and initial velocity influence the loading
• Forces that exceed the injury threshold of the long bone, generate a fracture
• Younger children are more likely to sustain a fracture while playing and falling on an outstretched arm.
• Head injuries and fractures increase 1.8 times for surfaces between 150-199 g vs <150 g

Since 1975 there have been efforts in products and standards to mitigate the severity of injury sustained during impact on the playground. There are a number of standards that have adopted values lower than the proposed 700 HIC for surfacing.

En1177-2 requires – swing seats under 900mm in diameter to impart <50g
- swing seats over 900mm in diameter to impart <120g
ASTM F1487-11 requires all swing seats are to have the Gmax not exceed 100 and HIC not exceed 500
CSA Z614-14 requires all swing seats are to have the Gmax not exceed 100 and HIC not exceed 500
CSA Z614-07 to current revision requires the fall height of top of barrier and guardrail increasing height by 725mm (28.5”) or 950mm (37.4”) and therefore the velocity of the test device on impact, effectively lowering the HIC as compared to other standards having the platform as the fall height.

Answering questions posed by those opposed to HIC reduction

There have been some who have posed questions that need to be addressed. There are some that may need some more specifics and clarification.

• What consideration is given to the likelihood that improved safety measures give children a greater sense of security, perhaps falsely, such that they take greater risks?
The prevention of injury is obvious from Peirce, Ball, King, the COMSIS report, Laforest and others that lowering the impact value associated with a fall will result in a less severe injury and this will include head, upper body and long-bones. The provision of impact attenuating surfacing does not mean the surface has to be “soft” or “mushy”. This is known from the work done in both natural and artificial turf fields meeting the FIFA requirement or the requirements of World Rugby that a rugby pitch provide a 1000 HIC from a drop height of 1.3 meters, and still be firm and stable to prevent lower extremity injuries. Playground surface systems such as EWF, poured-in-place, rubber tiles, loose rubber fill and artificial turf have demonstrated excellent impact attenuation at 12’ (3.65m) and still meeting the requirement for firmness and stability for an accessible route. Although the playground protective surface is meant to prevent serious to severe injury, this is not the foam filled landing pit in a gymnastic facility encouraging children to challenge the performance of the surface.

- **Could a reduction in HIC change other injury mechanisms, such as those involving long bone fractures?**
- **What is the clinical evidence?**

Again Peirce, Laforest and the University of British Columbia make it clear that long-bones fracture as a result of force and loading. Through the lowering of the impact value of the protective surface, the force and loading are reduced.

- **What would be the financial cost, given that there would be pressure to change playground surfaces already in place?**

The cost of playground injuries in Canada in 2004 were $185,000,000 and for the United States in 1995 were $1.2 billion and in 2002 were $11.8 billion. It is not the cost of installing better surfacing or maintaining surfacing once it is in place that matters, it is the savings. A 5% saving on the 2002 cost would be $590,000,000 and a 1% saving would be $118,000,000.

- **What would be the effectiveness of any such change?**

Since most studies by the CPSC and the COMSIS corporation show that children are not consciously choosing to fall and falls are generally the result of “reasonable foreseeable use” or children testing their limits and just being children and taking risks that they understand; the frequency of falling will remain, but the severity of injury will be reduced through the removal of the hazardous situation of a non-attenuating surface. The effectiveness of impact attenuation is the height from which a child falls. Canada and the United States to not set upper limits for fall height and therefore challenging play structures will have a realistic fall height. The EN however allows for no impact attenuating surfacing for stationary equipment with <2’ (600mm) above the ground and do require surfaces to be tested above 10’ (3000mm) leading one to believe the change has limitations for the countries using the EN1176 and En1177 standard.

- **What would be the cost to children’s ability to access play space if funds were diverted from play provision to safety measures?**

The opportunity for children to play would be enhanced, particularly if the savings to the injury treatment and rehabilitation side of the health function shows a savings, there is a good argument that the savings should be spent on increased play opportunities and playgrounds to take advantage of all of the advantages of play, including the potential for a reduction in childhood obesity.
• Is the evidence directly relevant to children’s playgrounds, and not taken from unrelated industry areas?

The impact values have been taken from the automotive industry and this where the WSTC, SI and HIC have been developed and validated for measurement of impact values. Irrespective of the industry that funded the research and validation of the testing, the human body is the human body, acceleration is acceleration, and impact is impact. Alternatively we do have the reconstruction of the death that resulted from a fall from a play structure and the extensive child abuse information related to damage to the body. It is hoped that child’s play on the playground is not the equivalent of child abuse, but some of the outcomes are abusive to the child.

Conclusion

The abundance of data and research presented in this paper should lead the industry professional to the conclusion that the benefits lowering the HIC from 1000 to 700 are more beneficial to attaining the goals of the CPSIA and international playground standards and the reduction of medical costs to society than the limited increase in cost to improve the performance of playground surface systems from 1000 HIC to 700. History has demonstrated several times that the economic cost and supposed burden to changing industry performance requirements on playground equipment and surfacing has at worst been minimal and has ultimately not stifled the growth or sale of new playground equipment within the United States and Canada. Undoubtedly there is much more that could be done to this end, but this is a major first step to injury prevention and reduction according to the mission of our industry standards. Should the reader desire additional information on the data presented they are encouraged to read the source material cited in this report so they can gain a clear understanding of the context in which this recommendation is given.
Bibliography

Canada. (2015, March 22). Retrieved from Google:
https://www.google.ca/?gfe_rd=cr&ei=Ri0PVZ3CGIlm2mQGIroDYDg&gws_rd=ssl#q=population+of+canada

http://www.cdc.gov/HomeandRecreationalSafety/Playground-Injuries/playgroundinjuries-factsheet.htm

United States of America. (2015, March 22). Retrieved from Google: https://www.google.ca/?gfe_rd=cr&ei=Ri0PVZ3CGIm2mQGIroDYDg&gws_rd=ssl#q=population+of+united+states+2013

Endnotes

1 (Tinsworth, 2001) page iii
2 (Mertz, 1997) page 27
3 (Mertz, 1997) page 26
4 (Young, 2013) page 2
5 (George Rutherford, 2004) page 13
6 (TBI by External Cause, 2010)
7 (TBI by External Cause, 2010)
8 (George Rutherford, 2004) page 13
9 (George Rutherford, 2004) page 13
10 (George Rutherford, 2004) page 14
11 (Julie Gilchrist, 2011) page 7
12 (Besson, 1977) page 3
13 (Besson, 1977) page 125
14 (Besson, 1977) page 5
15 (Besson, 1977) page 5
16 (Ratte, 1990) page 5.1-5
17 (McHenry, 2004) page 4
18 (McHenry, 2004) page 4
19 (Tinsworth, 2001) page iii
20 (Tinsworth, 2001) page ii
21 (Brown, 1994) page 36
22 (Tinsworth, 2001) page ii
23 (Ratte, 1990) page 1-1
24 (Ratte, 1990) page 3-4
25 (Ratte, 1990) page 3-7
26 (Ratte, 1990) page 3-7
27 (Ratte, 1990) page 3-8
28 (Tinsworth, 2001) page 24
29 (Ratte, 1990) page 4-1
30 (Ratte, 1990) page 4-4
31 (Ratte, 1990) page 5.1-4
32 (Ratte, 1990) page 5.1-4
33 (Ratte, 1990) page 5.1-5
34 (Ratte, 1990) page 5.1-7
35 (Ratte, 1990) page 5.1-7
36 (Ratte, 1990) page 5.1-8
37 (Ratte, 1990) page 5.1-8
38 (Ratte, 1990) page 5.1-9
39 (Ratte, 1990) page 5.1-10
40 (Ratte, 1990) page 5.1-10
41 (Ratte, 1990) page 5.1-11
42 (Ratte, 1990) page 5.1-12